您现在的位置是: 首页 > 体育新闻 体育新闻
世界杯比赛成绩_世界杯数据挖掘
tamoadmin 2024-07-31 人已围观
简介1.什么是数据挖掘2.数据挖掘是做什么的3.ML - 决策树(decision tree)4.什么是数据挖掘?5.互联网销售保险产品有哪些内容6.数据挖掘具有哪些特点?7.数据挖掘技术具有哪些特点?数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提
1.什么是数据挖掘
2.数据挖掘是做什么的
3.ML - 决策树(decision tree)
4.什么是数据挖掘?
5.互联网销售保险产品有哪些内容
6.数据挖掘具有哪些特点?
7.数据挖掘技术具有哪些特点?
数据挖掘(Data Mining)是指通过大量数据集进行分类的自动化过程,以通过数据分析来识别趋势和模式,建立关系来解决业务问题。换句话说,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
原则上讲,数据挖掘可以应用于任何类型的信息存储库及瞬态数据(如数据流),如数据库、数据仓库、数据集市、事务数据库、空间数据库(如地图等)、工程设计数据(如建筑设计等)、多媒体数据(文本、图像、、音频)、网络、数据流、时间序列数据库等。也正因如此,数据挖掘存在以下特点:
(1)数据集大且不完整
数据挖掘所需要的数据集是很大的,只有数据集越大,得到的规律才能越贴近于正确的实际的规律,结果也才越准确。除此以外,数据往往都是不完整的。
(2)不准确性
数据挖掘存在不准确性,主要是由噪声数据造成的。比如在商业中用户可能会提供数据;在工厂环境中,正常的数据往往会收到电磁或者是辐射干扰,而出现超出正常值的情况。这些不正常的绝对不可能出现的数据,就叫做噪声,它们会导致数据挖掘存在不准确性。
(3)模糊的和随机的
数据挖掘是模糊的和随机的。这里的模糊可以和不准确性相关联。由于数据不准确导致只能在大体上对数据进行一个整体的观察,或者由于涉及到隐私信息无法获知到具体的一些内容,这个时候如果想要做相关的分析操作,就只能在大体上做一些分析,无法精确进行判断。
而数据的随机性有两个解释,一个是获取的数据随机;我们无法得知用户填写的到底是什么内容。第二个是分析结果随机。数据交给机器进行判断和学习,那么一切的操作都属于是灰箱操作。
关于派可数据,用心创造数据价值 让数据分析更简单
什么是数据挖掘
关于什么是数据挖掘,很多学者和专家给出了不同的定义,以下我们列出几种常见的说法:
“简单地说,数据挖掘是从大量数据中提取或‘挖掘’知识。该术语实际上有点用词不当。数据挖掘应当更正确地命名为‘从数据中挖掘知识’,不幸的是它有点长。许多人把数据挖掘视为另一个常用的术语‘数据库中知识发现’或KDD的同义词。而另一些人只是把数据挖掘视为数据库中知识发现过程的一个基本步骤。” ——《数据挖掘:概念与技术》(J. Han and M. Kamber)
“数据挖掘就是对观测到的数据集(经常是很庞大的)进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其有价值的新颖方式来总结数据。”——《数据挖掘原理》(Did Hand, et al)
“运用基于计算机的方法,包括新技术,从而在数据中获得有用知识的整个过程,就叫做数据挖掘。”——《数据挖掘--概念、模型、方法和算法》(Mehmed Kantardzic)
“数据挖掘,简单地说,就是从一个数据库中自动地发现相关模式。”——《构建面向CRM的数据挖掘应用》(Alex Berson, et al)
“数据挖掘(DM)是从大型数据库中将隐藏的预测信息抽取出来的过程。”——《数据挖掘:机遇与挑战》(John Wang)
而作为数据挖掘领域的华人第一人,韩家炜教授在《数据挖掘:概念与技术》的教学幻灯片中,给出一个更清晰的定义:“数据挖掘,就是从大型数据库中抽取有意义的(非平凡的,隐含的,以前未知的并且是有潜在价值的)信息或模式的过程。”
这里我们可以看到数据挖掘具有以下几个特点:
基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。
非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。
隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。
新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。
价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是“屠龙之技”,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器。
“数据挖掘”这个术语是在什么时候被大家普遍接受的,已经难以考证,大约在上世纪90年代开始兴起。其中还有一段趣话。在科研界,最初一直沿用“数据库中的知识发现”(即KDD,Knowledge Discovery in Database)。在第一届KDD国际会议中,委员会曾经展开讨论,是继续沿用KDD,还是改名为Data Mining(数据挖掘)?最后大家决定投票表决,纳票数多的一方的选择。投票结果颇有戏剧性,一共14名委员,其中7位投票赞成KDD,另7位赞成Data Mining。最后一位元老提出“数据挖掘这个术语过于含糊,做科研应该要有知识”,于是在科研界便继续沿用KDD这个术语。而在商用领域,因为“数据库中的知识发现”显得过于冗长,就普遍用了更加通俗简单的术语——“数据挖掘”。
严格地说,数据挖掘并不是一个全新的领域,它颇有点“新瓶装旧酒”的意味。组成数据挖掘的三大支柱包括统计学、机器学习和数据库等领域内的研究成果,其它还包含了可视化、信息科学等内容。数据挖掘纳入了统计学中的回归分析、判别分析、聚类分析以及置信区间等技术,机器学习中的决策树、神经网络等技术,数据库中的关联分析、序列分析等技术。
数据挖掘是做什么的
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘流程:
定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
数据挖掘的技术,可粗分为:统计方法、机器学习方法、神经网络方法和数据库方法。统计方法,可细分为:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、CBR、遗传算法、贝叶斯信念网络等。神经网络方法,可细分为:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等。数据库方法主要是基于可视化的多维数据分析或OLAP方法,另外还有面向属性的归纳方法。
ML - 决策树(decision tree)
数据挖掘又译为资料探勘、数据矿。是一种透过数理模式来分析企业内储存的大量资料,以找出不同的客户或市场划分,分析出消费者喜好和行为的方法。它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。主要有数据准备、规律寻找和规律表示3个步骤。数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析等。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
是一个用数据发现问题、解决问题的学科。
通常通过对数据的探索、处理、分析或建模实现。
我们可以看到数据挖掘具有以下几个特点:
基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。
非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的“经过我的计算,我发现了一个有趣的现象,到本场比赛结束 为止,这届世界杯的进球数和失球数是一样的。非常的巧合!”那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。
隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。
新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。
价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是“屠龙之技”,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的 是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导 致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器
什么是数据挖掘?
机器学习中分类和预测算法的评估:
判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个 属性上的测试 ,每个分支代表一个 属性输出 ,而每个树叶结点代表 类或类分布 。树的最顶层是根结点。
机器学习中分类方法中的一个重要算法
信息和抽象,如何度量?
1948年,香农提出了 ”信息熵(entropy)“的概念
一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者
是我们一无所知的事情,需要了解大量信息==> 信息量的度量就等于不确定性的多少
例子:猜世界杯冠军,如一无所知,猜多少次?
每个队夺冠的几率不是相等的
比特(bit)来衡量信息的多少
变量的不确定性越大,熵也就越大
3.1 决策树归纳算法 ( ID3 )
10-1980, J.Ross. Quinlan, ID3算法
选择属性(A为age时)判断结点
信息获取量(Information Gain) :
Gain(A) = Info(D) - Infor_A(D)
Gain(A) =按yes/no分的熵 - 按A属性分类的熵
通过A来作为节点分类获取了多少信息
类似
Gain(income) = 0.029
Gain(student) = 0.151
Gain(credit_rating)=0.048
所以,选择age作为第一个根节点
重复。。。
算法:
*其他算法:
C4.5 : Quinlan
Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
共同点:都是贪心算法,自上而下(Top-down roach)
区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)
先剪枝
后剪枝
直观,便于理解,小规模数据集有效
处理连续变量不好(离散化,阈值选择对结果影响大)
类别较多时,错误增加的比较快
可规模性一般
1. Python
2. Python机器学习的库: scikit-learn
2.1: 特性:
简单高效的数据挖掘和机器学习分析
对所有用户开放,根据不同需求高度可重用性
基于Numpy, SciPy和matplotlib
开源,商用级别:获得 BSD许可
2.2 覆盖问题领域:
分类(classification), 回归(regression), 聚类(clustering), 降维(dimensionality reduction)
模型选择(model selection), 预处理(preprocessing)
3. 使用用scikit-learn
安装scikit-learn: pip, easy_install, windows installer
安装必要package:numpy, SciPy和matplotlib, 可使用 Anaconda (包含numpy, scipy等科学计算常用package)
4. 例子:
文档: ://scikit-learn.org/stable/modules/tree.html
安装 Graphviz: ://.graphviz.org/
配置环境变量
转化dot文件至pdf可视化决策树:dot -Tpdf iris.dot -o outpu.pdf
互联网销售保险产品有哪些内容
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘流程:
定义问题:清晰地定义出业务问题,确定数据挖掘的目的。
数据准备:数据准备包括:选择数据–在大型数据库和数据仓库目标中 提取数据挖掘的目标数据集;数据预处理–进行数据再加工,包括检查数据的完整性及数据的一致性、去噪声,填补丢失的域,删除无效数据等。
数据挖掘:根据数据功能的类型和和数据的特点选择相应的算法,在净化和转换过的数据集上进行数据挖掘。
结果分析:对数据挖掘的结果进行解释和评价,转换成为能够最终被用户理解的知识。
数据挖掘具有哪些特点?
一、互联网保险创新的现状
根据中国保险行业协会在2015年年初发布的《互联网保险行业发展报告》显示,针对经营互联网保险业务的公司分类,人身险公司有44家,财产险公司有16家,总体占全行业133家产寿险公司的45%。包括中国人保财险、泰康人寿、平安人寿、太平洋保险、天安财险等在内的多家险企已率先在线上跑马圈地,中国保险公司与互联网的深度融合已全面到来。
首先在监管层面,上个月,酝酿已久的《互联网保险业务监管暂行办法》终于由中国保监会发布,这标志着中国互联网保险业务基础监管规范的形成。《办法》以鼓励创新、防范风险和保护消费者权益为基本思路,从经营条件、经营区域、信息披露、监督管理等方面明确了互联网保险业务经营的基本规则;规定了互联网保险业务的销售、承保、理赔、退保、投诉处理及客户服务等保险经营行为应由保险机构管理负责;强化了经营主体履行信息披露和告知义务的内容和方式,着力解决互联网自主交易中可能存在的信息不透明、信息不对称等问题,以最大限度保护消费者的知情权和选择权。
其次在保险主体方面,早在2013年,中国人保就推出“掌上人保”,并号称是指尖上的保险;去年,以“理赔简单,就在天安”为口号的天安财险“车易赔”APP在全国上线;随后,“中国太保”“大地通保”、“泰康在线”等保险在线服务平台如雨后春笋般出现,可见,拼服务、拼体验已经成为各家保险主体竞争的主要方向。同时,各家保险公司在立足保险本身的同时,从渠道上也不断向延伸,分别与P2P平台、信用保证机构等开展不同程度的合作。以下是中国保险行业协会从服务创新、技术创新、渠道创新等三个方面对2014年60家提供互联网服务的产、寿险公司进行评价后的前15名榜单:
二、互联网保险创新背后的风险
应该说基于提升客户体验的互联网保险创新,方向是对的。互联网保险作为一个新兴的领域,发展空间巨大,但同时互联网保险创新也带来一系列风险和问题。从目前已经暴露的风险来看,主要包括保险产品创新异位、消费者投诉急剧增加、消费者道德风险敞口扩大、风险评估和控制不到位等。
(一)保险产品创新异位
自2013年底由“三马”投资的众安在线成立以来,带动了中国各大保险主体在保险产品上的创新热潮。盗刷险、高温险、退货险、喝麻险、世界杯足球流氓险等创新险种不断涌现,寿险公司也相继推出求关爱、爱升级、救生圈等所谓的基于微信平台的“扔捞”产品,名字一个比一个花哨,其中,不乏一些险种初具规模,但更多的是为创新而创新。如世界杯足球流氓险从头到尾就没卖出几份,导致本来就比较便宜的3元/份,到后期直接降价到1分钱/份,变成了一个十足的噱头。更有甚者,开发出雾霾险、赏月险、摇号险等,严重脱离保险的本质。
(二)消费者投诉急剧增加
据保监会近日公布的《关于2015年上半年保险消费者投诉情况的通报》显示,2015年上半年,中国保监会12378投诉维权热线全国转人工呼入总量157544件,同比上升40.24%。而其中,捆绑销售互联网产品的投诉占据一定比例,究其原因,很多保险主体互联网保险业务发展迅速,但管理和服务能力严重不足,片面注重销售前端网络化,后台运营管理却仍是传统思维,前端和后台不配套,买时容易退时难,从而导致消费者投诉。
(三)消费者道德风险敞口扩大
目前,各家保险主体在理赔服务上基本上都推出了简易赔付,即保险公司对于一定金额以下(2000-10000元不等)的保险事故实行简易赔付,消费者通过保险公司自己推出的APP平台,或拍照、或,将事故现场信息传输到保险公司后台,保险公司审核确认后立刻赔付,全程一般在5分钟左右时间完成。应该说这种做法极大地简化了理赔程序,缩短了理赔时间,方便了消费者。但是,客观地讲,我们也不得不面对当下国内的基本现状,国民的平均道德水准有待提高,修理厂、4S店有组织地批量,保险欺诈层出不穷,这些无疑都将保险公司的风险敞口无限扩大。
(四)风险评估和管理不到位
保险从本质上是风险转移的安排,应该有可量化的数据支撑,目前,很多产品的创新,缺少基本的费率厘定、成本测算等程序。同时,保险讲究的是大数法则,如果一款产品不能具备一定规模,赔付水平就会极不稳定,风险管理也就无从谈起。
三、互联网保险创新的风险管理
(一)保险产品创新:回归本质
保险,在法律和经济学意义上,是一种风险管理方式。因此,保险产品创新的基本原则和底线是创新的产品具有风险管理的可能性,即通过经验的积累和有效的管理措施能够降低保险标的风险。这也就是一般情况下地震、飓风等不可抗力不列入保险范围的根本原因,因为到目前为止,人类还无法通过自身的行为影响上述的发生。反观现在的保险产品创新,雾霾险也好,赏月险也罢,甚至是高温险,基本上都突破了上述这一基本原则。
之所以会出现现在这种情况,我想主要有两个方面原因,一是保险本身,在目前的保险市场上,规模产品的同质性非常严重,基本相同的条款,基本相同的费率,基本相同的服务,在这种情况下,产品创新的目标已经不再是客户的“需求”,而是客户的“眼球”。记得若干年前,有一个保险公司开发了一个险种叫“酒驾险”,从始至终没卖出一份保单,但公司从上到下都非常开心,因为这个产品在当时引起了包括新闻媒体、监管部门、同业公司以及消费者的极大关注,很好地提高了公司的知名度。二是与目前整个社会的大环境有关,当下,从集体到个体,在物质和经济的指挥下,每一个社会组织和细胞都在极力获取尽量多的,而忽视了本身的效用和价值。正像有一句话所说,走着,走着,忘记了出发的目的。
(二)保险风险管理:大数据为器
1.大数据在费率厘定中的应用。保单的费率设定是保险公司风险管理的源头,也是一项非常重要的工作,主要目的是使设定的费率对应于投保人的风险等级,风险越小,费率越低,尽量做到公平。确定费率较为关键的问题就是找出“影响赔付支出的风险因素或变量”,其实生命表就是“影响赔付支出的风险因素或变量”之一年龄的一个分类。再如,在车险定价中城市交通的拥挤程度、驾驶员的年龄、驾龄、性别、汽车的新旧程度等都可能是“影响赔付支出的风险因素或变量”,而这些因素或变量就是可以通过大量数据分析和处理来确定。
2.大数据在风险评估中的应用。在大数据时代,风险评估已经不仅仅局限于公司的历史数据、行业的历史数据,无论是风险特征的描述还是数据的获取都更加便利。首先在占据财产险市场70%以上份额的车险领域,保险公司可以获取三个层级数据来支撑风险评估,第一层级是核心层,包括公司和行业数据,第二层级是紧密层,包括车型、汽车零整比、二手车等数据;第三层级是移动层,包括利用车载传感设备收集驾驶员行为数据等。同时,对于保险公司的精算师来讲,更多、更广的数据获取,可以更精确地识别个体对象的潜在风险,建立更加有效的数据模型,不断改善和提高精算的精准程度,以帮助判断和评估风险以及风险准备金。
3.大数据在反理赔欺诈中的应用。在确保数据的情况下,通过完整的、多样化的数据(数据包括但不限于公司内部保单及理赔历史记录、行业数据、征信记录、公共社交网络数据、犯罪记录等),辅之以有效的算法和模型,来识别理赔中可能的欺诈模式、理赔人潜在的欺诈行为以及可能存在的欺诈链条,应该是未来反理赔欺诈的主要方向。而对于整个中国保险行业来讲,尽快建立起一套行业级的保险数据信息平台,是反理赔欺诈的关键。目前,上海、江苏等省市已经实现理赔信息数据共享,在这些地区反理赔欺诈行为的成效明显提高。
4.大数据在保险行业风险管理中应用之核心—数据整合。目前保险公司的数据有行业平台的同业数据、前端客户APP导入(或现场出单)数据,中端中介、渠道、理赔、呼叫数据,后端财务收付数据,另外,还有定价系统的汽车零配件数据、人事系统的人员数据、稽核审计风控系统的风控数据等,种类繁多和庞杂,因此,急需建立大数据平台进行数据整合,统一数据存储和传递标准,并将不同系统进行数据打通,再根据不同需要进行数据挖掘。
(三)保险风险控制:新技术应用
未来,新技术、新设备的应用将成为保险行业风险控制的主要途径。在承保环节,基于大数据基础的数据分析技术将在第一时间立体呈现保险标的各项数据和特征,为承保决策和政策提供第一手资料,从源头控制风险。在理赔环节,新技术、新设备同样将被广泛应用。在车辆保险领域,通过装载在车上的无线电子设备,运用通讯网络,实现对车辆、道路以及行车驾驶员进行静、动态信息提取和行为记录,从而监督行车驾驶员人的行为风险和道德风险,并进行出险前预防、出险中响应和出险后处理,从而使保险事故管理变被动为主动,降低理赔成本。在人寿保险领域,利用能够实时监控人体健康情况的可穿戴设备,来获取和细分不同群体、不同年龄的人体健康和生死概率,并适时向客户提供饮食、健身等方面的建议,从而降低投保人的医疗费用。在家庭财产险领域,通过智能家居系统对住宅进行远程监控并及时发现和缓解风险,当家中发生煤气泄漏或水管爆裂,可自动关掉阀门,从而减轻损失等。
任何事物的发展,都要有与之相对应的配套管理措施,互联网保险创新也不例外。今后相当长一段时间,互联网保险创新都将在路上,基于互联网保险创新的风险管理也必将亦步亦趋,紧紧跟随。
扩展阅读:保险怎么买,哪个好,手把手教你避开保险的这些"坑"
数据挖掘技术具有哪些特点?
1、基于大量数据:并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。
2、非平凡性:所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的?经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!?那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。
3、隐含性:数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。
4、新奇性:挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。
5、价值性:挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是?屠龙之技?,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器。
①基于大量数据
并非说小数据量上就不可以进行挖掘,实际上大多数数据挖掘的算法都可以在小数据量上运行并得到结果。但是,一方面过小的数据量完全可以通过人工分析来总结规律,另一方面来说,小数据量常常无法反映出真实世界中的普遍特性。
②非平凡性
所谓非平凡,指的是挖掘出来的知识应该是不简单的,绝不能是类似某著名体育评论员所说的?经过我的计算,我发现了一个有趣的现象,到本场比赛结束为止,这届世界杯的进球数和失球数是一样的。非常的巧合!?那种知识。这点看起来勿庸赘言,但是很多不懂业务知识的数据挖掘新手却常常犯这种错误。
③隐含性
数据挖掘是要发现深藏在数据内部的知识,而不是那些直接浮现在数据表面的信息。常用的BI工具,例如报表和OLAP,完全可以让用户找出这些信息。
④新奇性
挖掘出来的知识应该是以前未知的,否则只不过是验证了业务专家的经验而已。只有全新的知识,才可以帮助企业获得进一步的洞察力。
⑤价值性
挖掘的结果必须能给企业带来直接的或间接的效益。有人说数据挖掘只是?屠龙之技?,看起来神乎其神,却什么用处也没有。这只是一种误解,不可否认的是在一些数据挖掘项目中,或者因为缺乏明确的业务目标,或者因为数据质量的不足,或者因为人们对改变业务流程的抵制,或者因为挖掘人员的经验不足,都会导致效果不佳甚至完全没有效果。但大量的成功案例也在证明,数据挖掘的确可以变成提升效益的利器。
火林体育网下一篇:迈阿密热队老板_迈阿密热火股东